Lasserre Hierarchy for Large Scale Polynomial Optimization in Real and Complex Variables

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On the Lasserre Hierarchy of Semidefinite Programming Relaxations of Convex Polynomial Optimization Problems

The Lasserre hierarchy of semidefinite programming approximations to convex polynomial optimization problems is known to converge finitely under some assumptions. [J.B. Lasserre. Convexity in semialgebraic geometry and polynomial optimization. SIAM J. Optim. 19, 1995–2014, 2009.] We give a new proof of the finite convergence property, that does not require the assumption that the Hessian of the...

متن کامل

Regularization Methods for SDP Relaxations in Large-Scale Polynomial Optimization

We study how to solve semidefinite programming (SDP) relaxations for large scale polynomial optimization. When interior-point methods are used, typically only small or moderately large problems could be solved. This paper studies regularization methods for solving polynomial optimization problems. We describe these methods for semidefinite optimization with block structures, and then apply them...

متن کامل

The Lasserre Hierarchy in Almost Diagonal Form

The Lasserre hierarchy is a systematic procedure for constructing a sequence of increasingly tight relaxations that capture the convex formulations used in the best available approximation algorithms for a wide variety of optimization problems. Despite the increasing interest, there are very few techniques for analyzing Lasserre integrality gaps. Satisfying the positive semi-definite requiremen...

متن کامل

The Lasserre hierarchy in Approximation algorithms

The Lasserre hierarchy is a systematic procedure to strengthen a relaxation for an optimization problem by adding additional variables and SDP constraints. In the last years this hierarchy moved into the focus of researchers in approximation algorithms as the obtain relaxations have provably nice properties. In particular on the t-th level, the relaxation can be solved in time n ) and every con...

متن کامل

Graph Isomorphism and the Lasserre Hierarchy

In this paper we show lower bounds for a certain large class of algorithms solving the Graph Isomorphism problem, even on expander graph instances. Spielman [25] shows an algorithm for isomorphism of strongly regular expander graphs that runs in time exp{Õ(n 13 )} (this bound was recently improved to exp{Õ(n 15 )} [5]). It has since been an open question to remove the requirement that the graph...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: SIAM Journal on Optimization

سال: 2018

ISSN: 1052-6234,1095-7189

DOI: 10.1137/15m1034386